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Semiannual Report (April-October 1989)
18 October 1989

OPTICAL NEURAL NETS FOR SCENE ANALYSIS

1. PROGRAM OVERVIEW/OBJECTIVE

The objective of this program is to develop new neural net (NN) algorithms and
architectures for scene analysis.

2. APPROACHES

We have three general approaches. First, we distinguish between optimization and adaptive
learning neural nets. Second, we attempt to combine advanced pattern recognition concepts and
NN techniques into hybrid pattern recognition/NN architectures. Third, we address new hybrid
optical/digital NN algorithms and architectures. We now briefly discuss these approaches.

There are various levels of scene analysis that must be appreciated 11). Scene analysis has
many unique problems that do not arise in other data processing problems. These include: shift-
invariance, distortion-invarianct feature extraction, segmentation, and classification. The input
neuron representation space used is also of significant concern, since the use of iconic (pixel)
inputs requires many neurons (250,000 for a 500x500 pixel input). We achieve shift and limited
distortion-invariance by the use of a feature space input. This also appreciably reduces the
number of input neurons required. It also reduces the amount of training required (since the
system need not be trained on all distorted versions of each object). We assume that the feature
space is optically produced by another processor. To achieve segmentation (isolation of one
object in the field of view) we use range imagery and a symbolic correlator. The NN achieves
classification of the input object. During learning it modifies the initial feature space and
provides more complete distortion invariance.

We will use a new adaptive clustering NN (ACNN) for our adaptive learning NN. The
ACNN combines pattern recognition techniques (linear discriminant functions, clustering and
feature spaces) and NN techniques (to achieve piecewise linear discriminant surfaces). We
consider three optimization NNs: (1) a cubic energy and (2) a quadratic energy MTT NN (these
solve multiple constraint problems with the specific application considered being (MTT)
multitarget tracking), and (3) a mixture NN (this solves a constrained least squares problem for
the fractional amounts of different elements present in each image region with the application
considered being the processing of imaging spectrometer multispectral data). The final three NNs
we consider are: (4) a matrix inversion NN (this is most useful for all advanced linear algebra
functions in image processing), (5) a production system NN (for performing if-then propositional
and predicate calculus decisions and inferences), and (6) a symbolic NN (this combines a
symbolic correlator and a production system and allows multiple objects to be handled). The
ACNN (7) is the major NN we will consider.

We will be fabricating an optical laboratory neural net for on-line processing of input and
hidden layer neuron levels and their weights. This will use new modulated error diffusion optical
computer generated hologram (CGH) interconnection techniques. This optical NN will be used in
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conjunction with a hardware Hecht-Nielson Corporation (HNC) digital neural net. Our initial
hybrid optical/digital NN concept will involve the use of the digital NN for adaptive learning
and the optical NN for classification with real-time processing (with its interconnection weights
downloaded from the digital NN). Future goals involve increasing the use of adaptive functions
on the optical NN as optical materials and components mature.

3. SUMMARY OF PROPOSED NNs

The seven neural nets we will consider are now briefly summarized.

The input neurons to the production system NN are facts (antecedents and consequents).
Objects and object parts will be initially used and then surface types for object parts (cylinder,
sphere, valley, ridge, etc. ) will be used. The objects will be typical of those present in various
scenes. The weights define the rules. These will initially be posed as if-then statements, with all
rules written as the AND of several antecedents and the OR of several such sets of antecedents.
The output neurons that fire represent the new facts that are now learned to be true. As the
system iterates, it learns new rules and infers new results on the present input data. We initially
consider a propositional calculus system (with all parameters being exact terms) and then will
address a predicate calculus system (with parameters being variables) that is much more
powerful.

The E input neurons in our mixture NN each correspond to the fractional amounts of E
elements present in a mixture of elements within one region of an input scene. The outputs from
two matrix-vector multiplications are combined to form the new neuron states. After a number
of iterations, the final neuron states denote the fractional amount of each element present in the
input mixture.

The matrix inversion NN produces the inverse of a matrix that is given to the processor.
To calculate the inverse X of a matrix Q, we realize that QX = I. We formulate the solution
(the elements of the inverse of Q with elements ) as the minimization of an energy function . We
solve for the X that minimizes the energy function on a neural net. The matrix elements
(weights) in this NN have an attractive block Toeplitz form and thus acousto-optic (AO)
architectures should be very suitable for implementing this NN. This would represent the first
AO NN. Since matrix inversions are required in many pattern recognition linear discriminant
function designs and in most adaptive algorithms, this NN should have general computational
use in image processing (as well as in adaptive radar, control, etc.).

The cubic energy NN for MTT takes measurements on objects in each of three frames and
it assigns one target per measurement and time frame. This is useful for time sequential scene
analysis to associate objects (or object parts) in several tim, frames.

The quadratic energy MTT NN is a simplified version of the cubic energy NN. It processes
pairs of time frames. The resultant optical architecture will be much simpler and has J

significantly reduced component requirements.

The symbolic NN combines a symbolic correlator, production system NN, feature extractor
and image processing NN. Its major advantage is the ability to process multiple objects in the
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field of view (this is achieved by the symbolic correlator). It outputs a symbolic description of
each region of the input that denotes which generic shapes are present and their location. These
data are then symbolically encoded and fed to an NN. The NN is unique because of its symbolic
input neuron representation. Alternatively, the locations of regions of interest in the input scene
are used to guide the positioning of window functions (for segmentation) from which input
features are extracted and subsequently fed to an NN for object classification. These NNs again
combine pattern recognition and NN techniques.

The adaptive clustering NN will receive major attention. The input neurons will be
features, the hidden layer neurons will be prototypes of the various classes of objects and the
output neurons will denote the class of the input object. Clustering techniques will be used to
select the original hidden layer neurons (we allow several neurons or clusters per object class)
and hence the initial input to hidden layer weights. These represent a set of linear discriminant
functions (LDFs). The output neurons define the class of the input. The hidden to output layer
weights map the clusters to classes. Our study of criterion functions determines the type of error
function used to train the NN. Thus, advanced pattern recognition techniques are used to
initialize the set of NN weights. A new adaptive NN learning algorithm is then used to refine
and improve the initial weight estimates and to provide the LDF combinations that provide the
nonlinear piecewise discriminant surfaces finally used. This is the adaptive learning stage. This
new NN combines pattern recognition and NN techniques.

4. YEAR 1 PLANS

For year 1 (April 1989-March 1990), we have isolated 4 tasks that the man years available
allow.

e Task 1: Fabrication of the initial optical lab NN and interfacing of the Hecht-
Nielson Corporation (HNC) digital NN.

o Task 2: Completion of our MTT (cubic and quadratic) NN studies and simulations.

o Task 3: Simulations of the initial production system NN on object part input data.

o Task 4: Formulation of the first level of our adaptive clustering NN and simulated
demonstrations of its use and performance.

The personnel involved include: David Casasent (principal investigator), Frank Matousek
(technician), Sanjay Natarajan (neural net hardware, ACNN, imaging spectrometer), John-Scott
Smokelin (matrix inversion neural net), and Mark Yee (MTT neural net and production system).

5. SUMMARY OF PROGRESS (MONTHS 1-6)

Our work has been published in Journal and Conference papers and thus we reference these
papers and now summarize our work in the first 6 months. This has been quite prolific as we
have detailed the concepts for 7 different neural nets. We now summarize our work on these 7
NNs and our laboratory hardware.
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5.1 Production System Neural Net

The basic concept for this new type of NN was detailed [2]. We considered several
realizations of it and find a NN one preferable. We formulate all rules as IF-THEN statements
with antecedents an on the left and consequents cn on the right. We allow the AND of several
antecedents and the OR of several such combinations. As our new input neuron representation
space, we use one neuron per fact (antecedent or consequent). The input neurons are binary and
are activated '"1 if a fact is true or inactive "0" otherwise. After several iterations, the system
learns all consequents. The system can learn new rules, not explicitly present in the original IF-
THEN rules. The system can also operate with analog neurons, whose activation level is
proportional to the confidence of antecedent facts (as probabilities). We use analog weights and
binarize the output neurons. We formulated the weights as a matrix and the input and output
neurons (facts) as vectors. This allows implementation of this NN on an optical matrix vector
processor. The rules and hence the matrices in the optical matrix-vector realization of this NN
are fixed. Hence, its optical realization is most attractive. This represents a very new use of an
optical matrix-vector processor and a NN, with facts being the input neuron representation space
used.

5.2 Mixture Neural Net

The application we consider for this NN is the processing of imaging spectrometer data.
This is a specific case of a general mixture problem in which the amount xe of each of E elements
present in a. input mixture signal c must be determined. Generally only several elements are
present out of perhaps 500. This analysis must be performed for every pixel in an input scene to
identify what is present, interesting, new, etc. We have described this problem as an NN and
detailed its optical realization [3]. The optical realization uses two matrix-vector multipliers,
whose outputs are summed, thresholded, and fed back to the input of one of the matrix-vector
multipliers. The final vector output denotes the xe. The matrices in this optimization NN are
fixed (the database of element spectra, etc.) and thus its optical realization is very attractive.
This mixture NN represents a new NN applications.

5.3 Matrix-Inversion Neural Net

This matrix-inversion NN represents one of the most general purpose NN applications.
This occurs since matrix-inversion is a basic operation in all of modern signal and data
processing, which emphasizes operation on data arrays. Specific examples occur in pattern
recognition, adaptive signal processing, adaptive phased array radar, etc. The basic idea was
outline in Section 3. It has been more fully detailed [4], several new acousto-optic (AP) neural
net architectures to implement it have been advanced, and initial simulation results have been
obtained and are most promising. This is the first AO NN and it can easily handle NN
problems larger than the dimensionality (space bandwidth product) of the AO cell; plus, it is one
of the most general NNs we consider.

5.4 Cubic Energy Neural Net for Multitarget Tracking (MTT)

We have detailed the cubic energy NN for a specific multitarget tracking (MTT) problem
[5]. This has general use in time-sequential image processing. For MTT, the goal is to associate
measurements in a sequence of frames with different targets. We have detailed the algorithm for
the case of 3 time-sequential frames of data. We have devised a new optical architecture to



achieve this. New encoding, multiplexing, architectural and algorithmic concepts were used to
significantly reduce the component requirements. Since this is a tensor rather than a matrix
problem, such issues arise. Despite these improvements, we found the present state of optical
components too primitive to pursue this architecture further. Thus, we developed the quadratic
MTT NN (Section 5.5). Our contributions in terms of architectures and algorithms for the cubic
NN are still very significant and are suitable for all tensor (versus matrix-vector) NN problems.
Thus, this completed effort should have useful future impact as various nonlinear and
photorefractive optical components mature.

5.5 Quadratic Energy MTT Neural Net

This new and simplified algorithm [6] is far more attractive and is more easily realized
with more easily foreseen optical technology. Thus, we can conceive of it being realized in
optical hardware with a concentrated 4 year effort starting in 1990. Presently, we have
demonstrated its basic concept and its ability to handle multiple objects in a field of view [6].
We have also detailed its use in satellite rendezvous and docking [7] with promising initial results
(under a NASA grant). These results are most attractive when noise is present. Extensions are
presently being pursued for this quadratic energy MTT NN.

5.6 Symbolic NN

This symbolic NN concept is unique as it offers the only presently viable solution to the
processing of multiple objects in the field of view (FOV) of a 2-D image sensor. Our present
version consists of a symbolic correlator [8] whose outputs feed a production system NN [2]. The
symbolic correlator allows the use of this system with multiple objects in the FOV. It also
allows for high capacity and distortion invariance. Since it is a correlator, it achieves shift
invariance and can handle multiple objects. These symbolic outputs from each region of the
FOV can encode a large number of objects [9]. The unification of this symbolic correlator and
production system NN into a symbolic NN will be provided soon [10] with examples and
simulated data for a specific case study. This new NN offers the only viable NN solution to
multiple objects in the FOV of a sensor. This concept of a multichannel optical correlator (using
smart filters and symbolic encoding) feeding a production system NN (to achieve a symbolic NN)
is most unique and powerful.

5.7 Adaptive Clustering NN (ACNN)

This represents one of our projects that will run all 3 years. It was highlighted in Section 3
and epitomizes our approach (Section 2) to a hybrid optical/digital adaptive learning NN and a
hybrid pattern recognition/NN classifier for scene analysis. It uses a 3 layer NN, which can
achieve any piecewise nonlinear discriminant surface. We consider only supervised learning NNs.

We started the study of this ACNN with a review of criteria (error) functions used in
standard pattern recognition. We showed that the perceptron and sigmoid criterion functions
are both useful over a wide range of parameters [11]. We find the perceptron criterion function
to be most useful (since the minimum energy solution can be reached more easily with it than
with the more standard sigmoid criterion function). This represents a significant departure from
standard NNs. We note that the thresholding (nonlinear) function used in NN classification (we
distinguish between training and classification) can and should be different than the most
popular sigmoid function [11].
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This review of criterion functions [11] and our approaches (Section 2) lead us to our new
ACNN concept. It was first advanced [1,11] and recently fully detailed [12]. We note that
another NN contribution in these papers [11,12] is that conjugate gradient techniques are
preferable (in all NNs) to the more conventional delta or gradient descent methods.

We also observed that the hidden layer neurons are often binary in the most popular
adaptive learning NN backpropagation (BP) algorithm [11]. We generalized this to assign
specific initial hidden layer neurons to clusters or prototypes that are representative of the
classes in the input data. Thus, we employ pattern recognition clustering techniques to
determine the number of hidden layer neurons to use and to produce the initial set of input to
hidden layer neuron weights.

Use of such an initial set of weights is found to be preferable to the random starting
weights used in BP etc. As learning proceeds, we adapt these weights using a new algorithm
[121. In classification, we perform maximum selection of the most active hidden layer neuron.
Thus, our hidden layer neurons are binary. The hidden-to-output layer neuron connections are
also binary and perform mapping from the prototypes (hidden layer neuron selected) to the
output neurons (that denote the class of the input data).

Thus, in our 3 layer ACNN, the input neurons are analog and represent distortion-
invariant features, the hidden layer neurons are binary and are prototypes or clusters, while the
binary output neurons denote the class of the input data. As our input neuron representation
space, we use a feature space (wedge-sampled Fourier coefficients) that allows some in-plane
distortion invariance. This pattern recognition technique also significantly reduces the number
of input neurons and interconnections required (since this neuron feature space is of reduced
dimensionality compared to the iconic input image space). It also reduces the amount of training
needed (since we need not show the NN all distorted versions of each object). Our ACNN also
has the property that the number of parameters to be chosen empirically is significantly reduced.
For example, our clustering technique determines the number of hidden layer neurons, our
training algorithm does not require choices for momentum etc. parameters (as in BP), our
conjugate gradient algorithm has no convergence and step size parameters to be chosen (as in
gradient descent).

We have tested our ACNN on two databases: a synthetic two-feature 3-class set and a 3-D
distorted set of aspect views of different aircraft (using a wedge-sampled Fourier feature space).
The results obtained [121 are attractive. The ACNN trains much faster than BP and converges
faster. Our new conjugate gradient technique significantly improves the training time for BP,
and can be applied to other NNs. Our initial cluster or prototype selection adds little to the
overall calculations required and reduces learning time (since we start from initial prototype
weights, rather than from arbitrary weights as done in BP). The ACNN and BP achieve
comparable performance with much less training time required for our ACNN. The combination
of pattern recognition and NN techniques that our ACNN offers are most attractive. Its off-line
digital training and on-line optical classification result in an attractive hybrid optical/digital
NN. Our hardware for this system will be detailed in the next quarter.
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6. PLANS FOR THE REMAINDER OF YEAR 1

We will document our new hybrid optical/digital neural net concept and initial hardware
[131 and will discuss [141 how this one hybrid neural net can be used for all 7 neural net
realizations and as an associative memory/processor (the associative memory use is not DARPA
supported). This hardwa.e task will continue all 3 years.

We will detail simulated [10] and initial optical laboratory [15] results for our production
system and our symbolic neural net. We will use a set of objects composed of different generic
parts to demonstrate this.

We will perform the first error source analysis of any neural net [13]. Our mixture neural
net will be used as the case study. The general modeling and techniques used can be applied to
other NN applications. This thus represents a major new result useful for all optical NNs (as
well as for digital NNs).

We will be addressing our matrix-inversion NN further with attention to the many
applications of it and to the accuracy required. Our NN error source modeling work will be of
use here. The accuracy requirements will be of major concern. New algorithms to reduce these
issues can be developed (year 2) and applied to specific applications (year 3). This year 2 and 3
schedule is tentative.

Our cubic energy NN work has been concluded. Our quadratic energy NN work will bc
continued for the same MTT problem, with attention to algorithm extensions, crossing targets,
more targets in the FOV, improved algorithms, etc. and these results will be documented [16].

We will continue our symbolic NN work (this presently incorporates a symbolic correlator
and production system NN). Simulation results [10] and initial optical laboratory results [15]
will be obtained.

Our ACNN work will involve including its adaptive learning algorithm in software in our
digital NN and attention to a new feature space input [17] and database.
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